An ITK Implementation of the Symmetric Log-Domain Diffeomorphic Demons Algorithm

نویسندگان

  • Florence Dru
  • Tom Vercauteren
چکیده

This article provides an implementation of the symmetric log-domain diffeomorphic image registration algorithm, or symmetric demons algorithm for short. It generalizes Thirion’s demons and the diffeomorphic demons algorithm. The main practical advantages of the symmetric demons with respect to the other demons variants is that is provides the inverse of the spatial transformation at no additional computational cost and ensures that the registration of image A to image B provides the inverse of the registration from image B to image A. The algorithm works completely in the log-domain, i.e. it uses a stationary velocity field to encode the spatial transformation as its exponential. Within the Insight Toolkit (ITK), the classical demons algorithm is implemented as part of the finite difference solver framework. Our code reuses and extends this generic framework. The source code is composed of a set of reusable ITK filters and classes together with their unit tests. We also provide a small example program that allows the user to compare the different variants of the demons algorithm. This paper gives an overview of the algorithm, an overview of its implementation and a small user guide to ease the use of the registration executable. Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3060] Distributed under Creative Commons Attribution License

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach

Modern morphometric studies use non-linear image registration to compare anatomies and perform group analysis. Recently, log-Euclidean approaches have contributed to promote the use of such computational anatomy tools by permitting simple computations of statistics on a rather large class of invertible spatial transformations. In this work, we propose a non-linear registration algorithm perfect...

متن کامل

Diffeomorphic Image Registration with Cross - Correlation : Evaluating Automated Labeling

Avants et al.’s goal in writing this paper is to propose a new deformable registration method and compare it to existing methods using brain MRI data. The method they propose is called symmetric image normalization (SyN). The method is meant to achieve better registration by maximizing cross correlation within the space of diffeomorphic maps, and the authors provide the Euler-Lagrange equations...

متن کامل

Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain

One of the most challenging problems in modern neuroimaging is detailed characterization of neurodegeneration. Quantifying spatial and longitudinal atrophy patterns is an important component of this process. These spatiotemporal signals will aid in discriminating between related diseases, such as frontotemporal dementia (FTD) and Alzheimer's disease (AD), which manifest themselves in the same a...

متن کامل

Diffeomorphic demons: Efficient non-parametric image registration

We propose an efficient non-parametric diffeomorphic image registration algorithm based on Thirion's demons algorithm. In the first part of this paper, we show that Thirion's demons algorithm can be seen as an optimization procedure on the entire space of displacement fields. We provide strong theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a th...

متن کامل

Diffeomorphic demons using normalized mutual information, evaluation on multimodal brain MR images

The demons algorithm is a fast non-parametric non-rigid registration method. In recent years great efforts have been made to improve the approach; the state of the art version yields symmetric inverse-consistent largedeformation diffeomorphisms. However, only limited work has explored inter-modal similarity metrics, with no practical evaluation on multi-modality data. We present a diffeomorphic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009